HVAC
Building Control
Fire Safety
Your friend in indoor comfort & safety systems
Home Company Services Case Studies References Agencies Daikin-Vrv Handbook Fires / Hotels AskHvacMan Links Save Energy Contact Us
Fires &
Dictionary
Fire ABCs
Sprinklers
Some Fire Cases
Fire Books
Software
FireBoard
Hotels

Big Hotel Fires

Fire Safety
Detection
Suppression
Hotel Fire Case
Inspection
How to Survive
FireStats
Big Hotel Fires
Hotel Fire Cases
Fire Hazard Classification
Hotel Sprinkler Systems

Hotel Fire News

Special Fires
Hotel Fires
Ship Fires
Industrial Fires
Hospital Fires
Warehouse Fires

Restaurant/Nightclub Discotheque-Fires

High Rise Fires
Airport Fires
Fires
Fires ABC
Big Building Fires
Book About Fires
Fire Stats
Fire Board

Books About Fires

Software About Fires
Fire Sprinkler Software
Fire Egreess Software
Fire Modelling Software
Sprinkler
What is Fire Sprinkler
Success Stories
Sprinkler Manufacturers
Fire Pump Manufacturers
Standar for Sprinkler Systems
Sprinklered Hotels

Books About Sprinkler

Glossary
Definitions
Manufacturers
Basic
Why
Systems
Public Entry
Recration Areas
 Retail Areas
 Function Spaces
 Guestrooms
Hauskeeping
Elavators
Foods & Beverage
Mechanic Systems
Fire Protection
Kitchen
Site Development
 
 
Kader Industrial Doll Factory Fire ,Analysing the Fire

 

For 82 years, the world has recognized the 1911 Triangle Shirtwaist factory fire in New York City as the worst accidental loss-of-life industrial fire in which the fatalities were limited to the building of fire origin. With 188 fatalities, however, the Kader factory fire now replaces the Triangle fire in the record books.

When analysing the Kader fire, a direct comparison with the Triangle fire provides a useful benchmark. The two buildings were similar in a number of ways. The arrangement of the exits was poor, the fixed fire protection systems were insufficient or ineffective, the initial fuel package was readily combustible, and the horizontal and vertical fire separations were inadequate. In addition, neither company had provided its workers with adequate fire safety training. However, there is one distinct difference between these two fires: the Triangle Shirtwaist factory building did not collapse and the Kader buildings did.

Inadequate exit arrangements were perhaps the most significant factor in the high loss of life at both the Kader and the Triangle fires. Had the exiting provisions of NFPA 101, the Life Safety Code, which was established as a direct result of the Triangle fire, been applied at the Kader facility, substantially fewer lives would have been lost (NFPA 101, 1994).

Several fundamental requirements of the Life Safety Code pertain directly to the Kader fire. For example, the Code requires that every building or structure be constructed, arranged and operated in such a way that its occupants are not placed in any undue danger by fire, smoke, fumes or the panic that may occur during an evacuation or during the time it takes to defend the occupants in place.

The Code also requires that every building have enough exits and other safeguards of the proper size and at the proper locations to provide an escape route for every occupant of a building. These exits should be appropriate to the individual building or structure, taking into account the character of the occupancy, the capabilities of the occupants, the number of occupants, the fire protection available, the height and type of building construction and any other factor necessary to provide all the occupants with a reasonable degree of safety. This was obviously not the case in the Kader facility, where the blaze blocked one of Building One's two stairwells, forcing approximately 1,100 people to flee the third and fourth floors through a single stairwell.

In addition, the exits should be arranged and maintained so that they provide free and unobstructed egress from all parts of a building whenever it is occupied. Each of these exits should be clearly visible, or the route to every exit should be marked in such a way that every occupant of the building who is physically and mentally able readily knows the direction of escape from any point.

Every vertical exit or opening between the floors of a building should be enclosed or protected as necessary to keep the occupants reasonably safe while they exit and to prevent fire, smoke and fumes from spreading from floor to floor before the occupants have had a chance to use the exits.

The outcomes of both the Triangle and the Kader fires were significantly affected by the lack of adequate horizontal and vertical fire separations. The two facilities were arranged and built in such a way that a fire on a lower floor could spread rapidly to the upper floors, thus trapping a large number of workers.

Large, open work spaces are typical of industrial facilities, and fire-rated floors and walls must be installed and maintained to slow the spread of fire from one area to another. Fire also must be kept from spreading externally from the windows on one floor to those on another floor, as it did during the Triangle fire.

The most effective way to limit vertical fire spread is to enclose stairwells, elevators, and other vertical openings between floors. Reports of features such as caged freight elevators at the Kader factory raise significant questions about the ability of the buildings' passive fire protection features to prevent vertical spread of fire and smoke.

Back toIndustrial Fires
 
 
 
 
   
 
  http://www.iklimnet.com
 
Air Grilles
Air Diffusers
Air Quailty
All Air Systems
All Water Systems
Boilers
Building .Managament Systems ..BMS
Burners
Chillers
Cooling Towers
Cooling Load Calculation
Cryogenics
Energy Saving
Duct
Duct ,Smacna
Dampers ,Air
Dust Collection
Fans
Fire Dampers
Glass Selection
Heating
Heat Exchangers,water
Heat Recovery
Heat Tracing Systems
Hepa Filters
Hvac Applications
Humidifiers / Dehumidifiers
Insulation , Duct
Insulation , Pipe
Insulation , Sound
Nano Tech.,In Building
Occupancy Sensors
Pneumatic Conveying
Piping
Pool Ventilation
Process Piping
Psychrometry
Pumps
Radiant Heating
Refrigerant Systems
Solar Collectors
Sound
Steam Generation
Tables & Charts Gnr.
VAV Sytems
Valves
Ventilation
VRV Systems
STORE