HVAC
Building Control
Fire Safety
Your friend in indoor comfort & safety systems
Home Company Services Case Studies References Agencies Daikin-Vrv Handbook Fires / Hotels Links Save Energy Contact Us
Eco Homes

Solar Water Heeating

Solar Electric Systems
Wind Turbines
Passive Solar Heating
Passive Solar Cooling
Water Conservation
Building Material
Ground Source Heat Pumps
Eco Cases
Save Energy
Solar Water Heating
Solar Electric Systems
Wind Turbines
Passive Solar Heating
Passive Solar Cooling
Building Material
Water Conservation
Ground Source Heat-Pumps
Green Hotels

Glass &Windows Selection

Standalone Systems
Grid Connected Systems
Hybrid Systems
Back-up Systems
Solar Cells
Solar Arrays
Inverters
Change Controller
Direct Systems
Indirect Systems
Thermosiphons
Draindown Systems
Pool Heating Systems
Turbines
Hybrid Systems
Grid Systems
Water Pumping
Using Wind Energy
Enviromental Aspects
Buyer's Guide
Solar Collectors
Flat Plate Collectors
Evacuated Tube Collectors
Concentrating Collectors
Transpired Collectors
Solar Control Systems
Big Hotel Fires
Hotel Fire Cases
Fire Hazard Classification
Hotel Sprinkler Systems

Hotel Fire News

Ask The HvacMan
Air Handling Units
Cooling Towers
Heat Recovery
Psycometry

Steam Generation

Solar DC Inverters

What is an inverter?
An inverter changes DC voltage from batteries or solar panels, into standard household AC voltage so that it can be used by common tools and appliances
Essentially, it does the opposite of what a battery charger or "converter" does. DC is usable for some small appliances, lights, and pumps, but not much else. Most systems should include an inverter of some type, even if it is just an el-cheapo $29 Walmart thing to run the TV occasionally. Some DC appliances are available, with the exception of lights, fans and pumps there is not a wide selection. Most other 12 volt items we have seen are expensive and/or poorly made compared to their AC cousins. The most common battery voltage inputs for inverters are 12, 24, and 48 volts DC - a few models also available in other voltages.

There is also a special line of inverters called a utility intertie or grid tie, which does not usually use batteries - the solar panels or wind generator feeds directly into the inverter and the inverter output is tied to the grid power. The power produced is either sold back to the power company or (more commonly) offsets a portion of the power used. These inverters usually require a fairly high input voltage - 48 volts or more. Some, like the Sunny Boy, go up to 600 volts DC input.

A few grid tie inverters can also be used with batteries, but there will be some loss in overall efficiency for feeding the grid. How much loss can vary considerably, depending on the inverter and the size and type of batteries. If you need battery backup power for a grid tie system, we recommend the Outback Power inverters, as they have the best efficiency with batteries - you will get about a 5-10% loss. With some older inverters, such as the Xantrex SW series, that can sell back excess power to the grid overall losses can be as high as 50

How does an inverter work?
An inverter takes the DC input and runs it into a pair (or more) of power switching transistors. By rapidly turning these transistors on and off, and feeding opposite sides of a transformer, it makes the transformer think it is getting AC. The transformer changes this "alternating DC" into AC at the output. Depending on the quality and complexity of the inverter, it may put out a square wave, a "quasi-sine" (sometimes called modified sine) wave, or a true sine wave.

 

 
 
Google
 
Web www.iklim.com
  Discuss on the Message Board
   
 
  http://www.iklimnet.com
&n